Publications

45. The N-Bromo-Hammick Intermediate

Bhagat, V.; Wagner, J. P.* Chem. Eur. J. 2025, e02434.

44. Competing Modes of Hydrogen Activation in Singlet Pyridinylidenes: π-Approach vs σ*-Approach Reaction Pathways

Schuster, G. A.; Bhagat, V.; Wagner, J. P.* J. Phys. Chem. A 2025, 129, 8380-8386.

43. Hydrogen Activation by a σσ*-Carbene Through Quantum Tunneling

Bhagat, V.; Meisner, J.;* Wagner, J. P.* J. Am. Chem. Soc. 2025accepted manuscript.

42. Phenyl Radical Activates Molecular Hydrogen Through Protium and Deuterium Tunneling

Bhagat, V.; Meisner, J.;* Wagner, J. P.* Angew. Chem. Int. Ed. 2024, e202414573.

41. Synthesis of Thiourea and Thioamide S-Oxides via SO Transfer from a Thiirane S-Oxide onto N-Heterocyclic Carbenes

Medvedko, S.; Str?bele, M.; Fechter, M.; Fischer, A.; Hettiger, T.; Idzko, P.; Scheele, M.;* Wagner, J. P.* Org. Lett. 202426, 5868-5872.

40. From Criegee to Breslow: How π-Donors Steer the Route of Olefin Ozonolysis

Medvedko, S.; Wagner, J. P.* Chem. Eur. J. 202430, e202400026.

39. Designing a σ0π2 singlet ground state carbene from dicationic carbones

Wagner, J. P.* Chem. Comm. 202460, 3327-3330.

38. Conformations and Rearrangements of Collinolactone – Experiments and Theory on a Dynamic Cyclodecatriene

Decker, R. L.; Schray, D.; Pfeffer, H. I.; Grond, S.; Wagner, J. P.* Chem. Eur. J. 2024, 29, e202303435.

37. Photolytic Decarbonylation of Oxalyl Diisothiocyanate in Solid Argon Matrices to syn-anti Carbonyl Diisothiocyanate and Its Isomerization

Pfeiffer, J.; Wagner, J. P.;* Tambornino, F.* Eur. J. Inorg. Chem. 2023, e202300290.

36. A Metastable Ketenyl Radical–Water Complex from UV Photolysis of the Carboxymethyl Radical

Wagner, J. P.;* Bhagat, V. J. Phys. Chem. A 2023127, 3171-3178.

35. Sulfur Monoxide Release and Capture: A Computational Study

Idzko, P.; Wagner, J. P.* Eur. J. Org. Chem. 2023, e202201370.

34. Synthesis of Sterically Encumbered Thiourea S-Oxides through Direct Thiourea Oxidation

Medvedko, S.; Str?bele, M.; Wagner, J. P.* Chem. Eur. J. 202329, e202203005.

33. The activated reaction of dichlorocarbene with triplet molecular oxygen

Wagner, J. P.* Phys. Chem. Chem. Phys. 202224, 25834-25841.

32. 2H-Imidazol-2-one O-Oxide: A Criegee Intermediate from a σ0π2 Singlet Ground-State Carbene

Wagner, J. P.* J. Am. Chem. Soc. 2022144, 5937-5944.

31. Acetate Facilitated Nickel Catalyzed Coupling of Aryl Chlorides and Alkyl Thiols

Oechsner, R. M.; Wagner, J. P.;* Fleischer, I.* ACS Catal. 20224, 2233-2243.

30. σ0π2 Singlet Ground State Carbenes Undergo Least-Motion Reactions with H2 and Alkenes

Clewing, S. F.; Wagner, J. P.* J. Org. Chem. 202186, 15247-15252.

29. Infrared spectroscopy of the protonated HCl dimer and trimer

Wagner, J. P.; McDonald II, D. C.; Colley, J. E.; Franke, P. R.; Duncan, M. A. J. Chem. Phys. 2021155, 134302.

28. Criegee Intermediates in Autoxidation Reactions: Mechanistic Considerations

Wagner, J. P.* J. Phys. Chem. A 2021125, 406-410.

27. Intramolecular London Dispersion Interactions Do Not Cancel in Solution

Schümann, J. M.; Wagner, J. P.; Eckhardt, A. K.; Quanz, H.; Schreiner, P. R. J. Am. Chem. Soc. 2021143, 41-45.

26. Infrared spectroscopy of H+(CO)2 in the gas phase and in para-hydrogen matrices

Leicht, D.; Rittgers, B. M.; Douberly, G. E.; Wagner, J. P.; McDonald II, D. C.; Mauney, D. T.; Tsuge, M.; Lee, Y.-P.; Duncan, M. A. J. Chem. Phys. 2020153, 084305.

25. Difficulties of Popular Density Functionals to Describe the Conformational Isomerism in Iodoacetic Acid

Wagner, J. P.* J. Phys. Chem. A 2020124, 5570-5579.

24. The Role of Tunneling in the Spectra of H5+ and D5+ up to 7300 cm–1

Boyer, M. A.; Chiu, C. S.; McDonald, D. C.; Wagner, J. P.; Colley, J. E.; Orr, D. S.; Duncan, M. A.; McCoy, A. B. J. Phys. Chem. A 2020124, 4427-4439.

23. An Intramolecular Hydrogen-Shift in a Peroxy Radical at Cryogenic Temperatures: The Reaction of 2-Hydroxyphenyl Radical with O2

Wagner, J. P.* Chem. Eur. J. 202026, 12119-12124.

22. Gauging stability and reactivity of carbonyl O-oxide Criegee intermediates

Wagner, J. P.* Phys. Chem. Chem. Phys. 201921, 21530-21540.

21. Gas phase infrared spectroscopy of the H2C=NH2+ methaniminium cation

Wagner, J. P.; Giles, S. M.; Duncan, M. A. Chem. Phys. Lett. 2019726, 53-56.

20. Near-Infrared Spectroscopy and Anharmonic Theory of Protonated Water Clusters: Higher Elevations in the Hydrogen Bonding Landscape

McDonald II, D. C.; Wagner, J. P.; McCoy, A. B.; Duncan, M. A. J. Phys. Chem. Lett. 20189, 5664-5671.

19. Mid-Infrared Spectroscopy of C7H7+ Isomers in the Gas Phase: Benzylium and Tropylium

Wagner, J. P.; McDonald II, D. C.; Duncan, M. A. J. Phys. Chem. Lett. 20189, 4591-4595.

18. Communication: Infrared photodissociation spectroscopy of the H6+ cation in the gas phase

McDonald II, D. C.; Wagner, J. P.; Duncan, M. A. J. Chem. Phys. 2018149, 031105.

17. Spectroscopy of Proton Coordination with Ethylenediamine

Wagner, J. P.; McDonald II, D. C.; Duncan, M. A. J. Phys. Chem. A 2018122, 5168-5176.

16. Intricate Conformational Tunneling in Carbonic Acid Monomethyl Ester

Linden, M. M.; Wagner, J. P.; Bernhardt, B.; Allen, W. D.; Schreiner, P. R. J. Phys. Chem. Lett. 20189, 1663-1667.

15. An Argon–Oxygen Covalent Bond in the ArOH+ Molecular Ion

Wagner, J. P.; McDonald II, D. C.; Duncan, M. A. Angew. Chem., Int. Ed. 201857, 5081-5085.

14. Infrared Spectroscopy of the Astrochemically Relevant Protonated Formaldehyde Dimer

Wagner, J. P.; McDonald II, D. C.; Duncan, M. A. J. Phys. Chem. A 2018122, 192-198.

13. Mid/near infrared spectroscopy of the H2Cl+Ar cation complex compared to the predictions of anharmonic theory

McDonald II, D. C.; Wagner, J. P.; Duncan, M. A. Chem. Phys. Lett. 2018691, 51-55.

12. Near-infrared spectroscopy and anharmonic theory of the H2O+Ar1,2 cation complexes

Wagner, J. P.; McDonald II, D. C.; Duncan, M. A. J. Chem. Phys. 2017147, 104302.

11. Tunneling Isomerizations on the Potential Energy Surfaces of Formaldehyde and Methanol Radical Cations

Wagner, J. P.; Bartlett, M. A.; Allen, W. D.; Duncan, M. A. ACS Earth Space Chem. 20171, 361-367.

10. Towards the pyrolytic preparation of carbonothioic O,O-acid (monothiocarbonic acid)

Niedek, D.; Wagner, J. P.; Schreiner, P. R. J. Anal. Appl. Pyrolysis 2017124, 439-445.

9. [2](1,3)Adamantano[2](2,7)pyrenophane: A Hydrocarbon with a Large Dipole Moment

Kahl, P.; Wagner, J. P.; Balestrieri, C.; Becker, J.; Hausmann, H.; Bodwell, G. J.; Schreiner, P. R. Angew. Chem., Int. Ed. 201655, 9277-9281.

8. Tunnelling in carbonic acid

Wagner, J. P.; Reisenauer, H. P.; Hirvonen, V.; Wu, C.-H.; Tyberg, J. L.; Allen, W. D.; Schreiner, P. R. Chem. Commun. 201652, 7858-7861.

7. London Dispersion Decisively Contributes to the Thermodynamic Stability of Bulky NHC-Coordinated Main Group Compounds

Wagner, J. P.; Schreiner, P. R. J. Chem. Theory Comput. 201612, 231-237.

6. London Dispersion in Molecular Chemistry—Reconsidering Steric Effects

Wagner, J. P.; Schreiner, P. R. Angew. Chem., Int. Ed. 201554, 12274-12296.

5. Domino Tunneling

Schreiner, P. R.; Wagner, J. P.; Reisenauer, H. P.; Gerbig, D.; Ley, D.; Sarka, J.; Császár, A. G.; Vaughn, A.; Allen, W. D. J. Am. Chem. Soc. 2015137, 7828-7834.

4. The Self-Association of Graphane Is Driven by London Dispersion and Enhanced Orbital Interactions

Wang, C.; Mo, Y.; Wagner, J. P.; Schreiner, P. R.; Jemmis, E. D.; Danovich, D.; Shaik, S. J. Chem. Theory Comput. 201511, 1621-1630.

3. Gas-Phase Preparation of Carbonic Acid and Its Monomethyl Ester

Reisenauer, H. P.; Wagner, J. P.; Schreiner, P. R. Angew. Chem., Int. Ed. 201453, 11766-11771.

2. Nature Utilizes Unusual High London Dispersion Interactions for Compact Membranes Composed of Molecular Ladders

Wagner, J. P.; Schreiner, P. R. J. Chem. Theory Comput. 201410, 1353-1358.

1. Cyclopropylhydroxycarbene

Ley, D.; Gerbig, D.; Wagner, J. P.; Reisenauer, H. P.; Schreiner, P. R. J. Am. Chem. Soc. 2011133, 13614-13621.