Prof. Dr. Sabrina Kombrink

Anmeldung und Verwaltung meiner Vorlesungen und Seminare über Stud.IP

Sprechstunde:

Montags, 9.30 - 10.30 Uhr
per Email erreichbar 

SoSe 2025

Introduction to discrete structures

ARTICLES

  1. S. van Golden, C. Kalle, S. Kombrink and T. Samuel. Dimensions of infinitely generated self-affine sets and restricted digit sets for signed Lüroth expansions. Nonlinearity, 38, no. 4, 2025.
    DOI: 10.1088/1361-6544/adbb4d  , arXiv:2404.10749
  2. S. Kombrink and L. Schmidt. Eigenvalue counting functions and parallel volumes for examples of fractal sprays generated by the Koch snowflake. Recent Developments in Fractals and Related Fields. Trends in Mathematics: Birkh?user, 2025.
    DOI: 10.1007/978-3-031-80453-3_10  , arXiv:2312.12331
  3. L. Thomas-Seale, B. Hawthorn, S. Kombrink, T. Samuel, J. Bryson, H. Thomson and T. Montenegro-Johnson. Topological analysis to enhance the understanding of transdisciplinary engineering. Advances in Transdisciplinary Engineering. Volume 60: Engineering for Social Change, 2024.
    DOI: 10.3233/ATDE240873
  4. S. Kombrink. Renewal Theorems and Their Application in Fractal Geometry. Fractal Geometry and Stochastics VI, 71–98. Progress in Probability 76, Birkh?user/Springer, Basel, 2021.
    DOI: 10.1007/978-3-030-59649-1_4
  5. M. Kesseb?hmer, S. Kombrink, Y. Pesin, T. Samuel and J. Schmeling. Preface: Thermodynamic Formalism – Applications to Geometry, Number Theory and Stochastics. Stochastics and Dynamics, 21, no. 3, 1–5, 2021.
    DOI 10.1142/S0219493721020019
  6. S. Kombrink and S. Winter. Lattice self-similar sets on the real line are not Minkowski measurable. Ergodic Theory and Dynamical Systems, 40 (1), 221–232, 2020.
    DOI: 10.1017/etds.2018.26, arXiv:1801.08595
  7. S. Kombrink and T. Samuel. Fractal Geometry and Dynamics, London Mathematical Society Newsletter, 481, 24–29, 2019.
    DOI: 10.1112/NLMS
  8. S. Kombrink. Renewal theorems for processes with dependent interarrival times. Advances in Applied Probability, 50 (4), 1193–1216, 2018.
    DOI: 10.1017/apr.2018.56
  9. A. F?hnrich, S. Klein, A. Sergé, C. Nyhoegen, S. Kombrink, S. M?ller, K. Keller, J. Westermann and K. Kalies. CD154 Costimulation Shifts the Local T-Cell Receptor Repertoire Not Only During Thymic Selection But Also During Peripheral T-Dependent Humoral Immune Responses. Frontiers in Immunology, 9:1019, 2018.
    DOI: 10.3389/fimmu.2018.01019
  10. M. Kesseb?hmer and S. Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete and Continuous Dynamical Systems, Series S, 10 (2), 335–352, 2017.
    DOI: 10.3934/dcdss.2017016 , arXiv:1604.08252
  11. S. Kombrink, E. P. J. Pearse and S.Winter. Lattice-type self-similar sets with pluriphase generators fail to be Minkowski measurable. Mathematische Zeitschrift 283 (3), 1049–1070, 2016.
    DOI: 10.1007/s00209-016-1633-x , arXiv:1501.03764
  12. M. Kesseb?hmer and S. Kombrink. Minkowski content and fractal Euler characteristic for conformal graph directed systems, Journal of Fractal Geometry 2 (2), 171–227, 2015.
    DOI: 10.4171/jfg/19 , arXiv:1211.7333
  13. S. Kombrink. A survey on Minkowski measurability of self-similar and self-conformal fractals in ?d. Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I: Fractals in Pure Mathematics, Contemporary Mathematics 600, American Mathematical Society, 135–159, 2013.
    DOI: 10.1090/conm/600/11931
  14. M. Kesseb?hmer and S. Kombrink. Fractal curvature measures and Minkowski content for self-conformal subsets of the real line. Advances in Mathematics 230, 2474–2512, 2012.
    DOI: 10.1016/j.aim.2012.04.023 , arXiv:1012.5399
  15. U. Freiberg and S. Kombrink. Minkowski content and local Minkowski content for a class of self-conformal sets. Geometriae Dedicata 159 (1), 307–325, 2012.
    DOI: 10.1007/s10711-011-9661-5 , arXiv:1109.3896

PREPRINTS AND WORKING PAPER

  1. S. Kombrink, L. Schmidt. On bounds for the remainder term of counting functions of the Neumann Laplacian on domains with fractal boundary. 22 pp.
    arXiv:2312.12308
  2. M. Kesseb?hmer, S. Kombrink. Minkowski measurability of infinite conformal graph directed systems and application to Apollonian packings. 30 pp.
    arXiv:1702.02854
  3. J. Herterich, D. Allwright, D. Bearup, S. Kombrink, D. Herring, Z. Liu, Z. Wu, S. Olesker-Taylor. Non-contact ultrasound testing of batteries. [Working Paper]. Mathematics in Industry Reports, Cambridge University Press, 2025.
    DOI: 10.33774/miir-2025-btsjk
  4. V-KEMS Study Group Report – Recovery from the Pandemic: Transport Logistics. [Working Paper]. ktn, ICMS, Isaac Newton Institute for Mathematical Sciences, Newton Gateway to Mathematics, 2022.
    https://gateway.newton.ac.uk/sites/default/files/asset/doc/2208/Transport%20Logistics%20Virtual%20Study%20Group%20Report.pdf
  5. V-KEMS Report – COVID19 Safety in Large Events. [Working Paper]. ktn, ICMS, Isaac Newton Institute for Mathematical Sciences, Newton Gateway to Mathematics, Sep 2021.
    https://gateway.newton.ac.uk/sites/default/files/asset/doc/2202/VSG13_COMMUNITIES_OF_THE_FUTURE.pdf

BOOKS (EDITOR)

  1. M. Kesseb?hmer, S. Kombrink, Y. Pesin, T. Samuel and J. Schmeling (eds.). Thermodynamic Formalism – Applications to Geometry, Number Theory and Stochastics, Stochastics and Dynamics 21, no.3, Special Issue in Honor of the 75th Birthday of Prof. Manfred Denker, 2021.