Prof. Dr. Sabrina Kombrink
Anmeldung und Verwaltung meiner Vorlesungen und Seminare über Stud.IP
Sprechstunde:
Montags, 9.30 - 10.30 Uhr
per Email erreichbar
SoSe 2025
Introduction to discrete structures
ARTICLES
- S. van Golden, C. Kalle, S. Kombrink and T. Samuel. Dimensions of infinitely generated self-affine sets and restricted digit sets for signed Lüroth expansions. Nonlinearity, 38, no. 4, 2025.
DOI: 10.1088/1361-6544/adbb4d , arXiv:2404.10749 - S. Kombrink and L. Schmidt. Eigenvalue counting functions and parallel volumes for examples of fractal sprays generated by the Koch snowflake. Recent Developments in Fractals and Related Fields. Trends in Mathematics: Birkh?user, 2025.
DOI: 10.1007/978-3-031-80453-3_10 , arXiv:2312.12331 - L. Thomas-Seale, B. Hawthorn, S. Kombrink, T. Samuel, J. Bryson, H. Thomson and T. Montenegro-Johnson. Topological analysis to enhance the understanding of transdisciplinary engineering. Advances in Transdisciplinary Engineering. Volume 60: Engineering for Social Change, 2024.
DOI: 10.3233/ATDE240873 - S. Kombrink. Renewal Theorems and Their Application in Fractal Geometry. Fractal Geometry and Stochastics VI, 71–98. Progress in Probability 76, Birkh?user/Springer, Basel, 2021.
DOI: 10.1007/978-3-030-59649-1_4 - M. Kesseb?hmer, S. Kombrink, Y. Pesin, T. Samuel and J. Schmeling. Preface: Thermodynamic Formalism – Applications to Geometry, Number Theory and Stochastics. Stochastics and Dynamics, 21, no. 3, 1–5, 2021.
DOI 10.1142/S0219493721020019 - S. Kombrink and S. Winter. Lattice self-similar sets on the real line are not Minkowski measurable. Ergodic Theory and Dynamical Systems, 40 (1), 221–232, 2020.
DOI: 10.1017/etds.2018.26, arXiv:1801.08595 - S. Kombrink and T. Samuel. Fractal Geometry and Dynamics, London Mathematical Society Newsletter, 481, 24–29, 2019.
DOI: 10.1112/NLMS - S. Kombrink. Renewal theorems for processes with dependent interarrival times. Advances in Applied Probability, 50 (4), 1193–1216, 2018.
DOI: 10.1017/apr.2018.56 - A. F?hnrich, S. Klein, A. Sergé, C. Nyhoegen, S. Kombrink, S. M?ller, K. Keller, J. Westermann and K. Kalies. CD154 Costimulation Shifts the Local T-Cell Receptor Repertoire Not Only During Thymic Selection But Also During Peripheral T-Dependent Humoral Immune Responses. Frontiers in Immunology, 9:1019, 2018.
DOI: 10.3389/fimmu.2018.01019 - M. Kesseb?hmer and S. Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete and Continuous Dynamical Systems, Series S, 10 (2), 335–352, 2017.
DOI: 10.3934/dcdss.2017016 , arXiv:1604.08252 - S. Kombrink, E. P. J. Pearse and S.Winter. Lattice-type self-similar sets with pluriphase generators fail to be Minkowski measurable. Mathematische Zeitschrift 283 (3), 1049–1070, 2016.
DOI: 10.1007/s00209-016-1633-x , arXiv:1501.03764 - M. Kesseb?hmer and S. Kombrink. Minkowski content and fractal Euler characteristic for conformal graph directed systems, Journal of Fractal Geometry 2 (2), 171–227, 2015.
DOI: 10.4171/jfg/19 , arXiv:1211.7333 - S. Kombrink. A survey on Minkowski measurability of self-similar and self-conformal fractals in ?d. Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I: Fractals in Pure Mathematics, Contemporary Mathematics 600, American Mathematical Society, 135–159, 2013.
DOI: 10.1090/conm/600/11931 - M. Kesseb?hmer and S. Kombrink. Fractal curvature measures and Minkowski content for self-conformal subsets of the real line. Advances in Mathematics 230, 2474–2512, 2012.
DOI: 10.1016/j.aim.2012.04.023 , arXiv:1012.5399 - U. Freiberg and S. Kombrink. Minkowski content and local Minkowski content for a class of self-conformal sets. Geometriae Dedicata 159 (1), 307–325, 2012.
DOI: 10.1007/s10711-011-9661-5 , arXiv:1109.3896
PREPRINTS AND WORKING PAPER
- S. Kombrink, L. Schmidt. On bounds for the remainder term of counting functions of the Neumann Laplacian on domains with fractal boundary. 22 pp.
arXiv:2312.12308 - M. Kesseb?hmer, S. Kombrink. Minkowski measurability of infinite conformal graph directed systems and application to Apollonian packings. 30 pp.
arXiv:1702.02854 - J. Herterich, D. Allwright, D. Bearup, S. Kombrink, D. Herring, Z. Liu, Z. Wu, S. Olesker-Taylor. Non-contact ultrasound testing of batteries. [Working Paper]. Mathematics in Industry Reports, Cambridge University Press, 2025.
DOI: 10.33774/miir-2025-btsjk - V-KEMS Study Group Report – Recovery from the Pandemic: Transport Logistics. [Working Paper]. ktn, ICMS, Isaac Newton Institute for Mathematical Sciences, Newton Gateway to Mathematics, 2022.
https://gateway.newton.ac.uk/sites/default/files/asset/doc/2208/Transport%20Logistics%20Virtual%20Study%20Group%20Report.pdf - V-KEMS Report – COVID19 Safety in Large Events. [Working Paper]. ktn, ICMS, Isaac Newton Institute for Mathematical Sciences, Newton Gateway to Mathematics, Sep 2021.
https://gateway.newton.ac.uk/sites/default/files/asset/doc/2202/VSG13_COMMUNITIES_OF_THE_FUTURE.pdf
BOOKS (EDITOR)
- M. Kesseb?hmer, S. Kombrink, Y. Pesin, T. Samuel and J. Schmeling (eds.). Thermodynamic Formalism – Applications to Geometry, Number Theory and Stochastics, Stochastics and Dynamics 21, no.3, Special Issue in Honor of the 75th Birthday of Prof. Manfred Denker, 2021.